Tool Health Monitoring Using Airborne Acoustic Emission and Convolutional Neural Networks: A Deep Learning Approach
نویسندگان
چکیده
Tool health monitoring (THM) is in great focus nowadays from the perspective of predictive maintenance. It prevents increased downtime due to breakdown maintenance, resulting reduced production cost. The paper provides a novel approach tool computer numeric control (CNC) machine for turning process using airborne acoustic emission (AE) and convolutional neural networks (CNN). Three different work-pieces aluminum, mild steel, Teflon are used experimentation classify carbide high-speed steel (HSS) tools into three categories new, average (used), worn-out tool. Acoustic signals machining produce time–frequency spectrograms then fed tri-layered CNN architecture that has been carefully crafted high accuracies faster trainings. Different sizes numbers filters, combinations, multiple trainings compare classification accuracy. A with four each size 5 × 5, gives best results all cases accuracy 99.2%. proposed promising emission.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملOnline Tool Wear Monitoring Tool Wear Monitoring Using Acoustic Emission
This research work highlights the effects of acoustic emission (AE) signals emitted during the milling of H13 tool steel as an important parameter in the identification of tool wear. These generated AE signals provide information on the chip formation, wear, fracture and general deformation. Furthermore, it is aimed at implementing an online monitoring system for machine tools, using a sensor f...
متن کاملAcoustic Scene Classification Using Convolutional Neural Networks
Acoustic scene classification (ASC) aims to distinguish between different acoustic environments and is a technology which can be used by smart devices for contextualization and personalization. Standard algorithms exploit hand-crafted features which are unlikely to offer the best potential for reliable classification. This paper reports the first application of convolutional neural networks (CN...
متن کاملAcoustic Event Classification Using Convolutional Neural Networks
Acoustic scene classification (ASC) aims to distinguish between different acoustic environments and is a technology which can be used by smart devices for contextualization and personalization. Standard algorithms exploit hand-crafted features which are unlikely to offer the best potential for reliable classification. This paper reports the first application of convolutional neural networks (CN...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11062734